Approaches to Comparison of Effort

Joseph E. Aldy Harvard Kennedy School

Bilateral Cooperation between China and the United States: Facilitating Progress on Climate Change Policy

Beijing, China June 26, 2015

Approaches to Comparing Effort

- Role of Transparency
- Role of Comparability
- Implications for Negotiations

Role of Transparency

Lessons from Policy Surveillance in Non-Climate Agreements

• Reviewed IMF, WTO, OECD, Montreal Protocol, CITES, and arms control agreements

- Key lessons
 - Credibility of information
 - Engaging peers
 - Learning
 - Implementing surveillance
 - Role of civil society

Credibility of Information

• Delegate surveillance to "neutral" third parties, such as international organizations

• IOs employ permanent staff experts, make incountry visits – IMF, OECD, WTO

 Data, analysis, evaluation of policy actions and outcomes key to effective transparency

Engaging Peers

 Expert reviews at IMF, OECD, and WTO feed into peer review mechanisms

- Facilitate understanding about effective policy practice
- "Reciprocal multilateral scrutiny"
 - Schelling's description of pledge and review

Learning

• Identifying best practices assists other countries in their mitigation policy design

- Assess collective effort of mitigation
 - Global emissions
 - Efficacy and costs of mitigation policies
 - Thematic examinations
 - Analogs in World Economic Outlook, World Energy Outlook, UNEP Emission Gap reports

Implementing Surveillance

 International institutions of information collection and dissemination can lower the costs of an international agreement

• Standards for data dissemination and codes for good policy practice can enhance countries' technical capacities

• Frequency of review could build on experience in IMF, OECD, and WTO

Role of Civil Society

 Shining light on policy implementation and outcomes can empower stakeholders

- Civil society can review the reviewers and develop new methods for review and analysis
- CITES formally relies on NGOs to review national reports and monitor trade in endangered species

Role of Comparability

Why Compare Mitigation Effort?

- Normative / ethical approaches for burden-sharing
- Facilitative—supporting cooperation and future ambition
 - "Individuals tend to react to the positive actions of others with positive responses and the negative actions of others with negative responses." Ostrom (1998)
 - How might parties judge positive or negative action?
 - Different parties and constituents judge differently?

Principles for Metrics of Comparability

• <u>Comprehensive</u>: captures the notion of "effort" in the widest possible sense. Similar countries ought to exhibit similar values in a "fair" agreement

• <u>Measurable and replicable</u>: directly observable or based on transparent analysis

• <u>Universal</u>: can be applied to efforts by a broad set of countries

Metrics I: Emissions (and other physical measures)

- Potential metrics
 - Relative to base year or forecast level
 - Relative to population or economic activity, absolute or change over time
- Pros/Cons
 - Associated with environmental outcome (+)
 - Measurable relative to history (+)
 - Choice of base year / index will give different countries an advantage (+/-)
 - Relative to forecast may be best notion of "effort" but less measurable (-)

Metrics II: Prices

- Potential metrics
 - Carbon dioxide or energy prices
 - Taxes / carbon price or net price of energy
 - Absolute levels or change over time
- Pros/Cons
 - Carbon price reflects policy effort (+)
 - Market prices are observable (+)
 - Reflect long-term investment incentives (+)
 - Exchange rates can be problematic (-)
 - Does not easily capture non-price policies (-)

Metrics III: Costs

- Potential metrics
 - Absolute or relative to GDP
 - Estimate for actual policies or least cost alternative
- Pros/Cons
 - Most closely reflects "effort" (+)
 - Not observed; requires modeling (-)
 - Actual policy costs could reward costly but ineffective policies (-)

Conclusions Regarding Metrics

• No single metric satisfies all three criteria

- Individual countries may prefer specific metrics that reflect their interests, resulting in lack of consensus among all parties to UNFCCC
- Recommend consideration of a suite of metrics
 - Analogous to use of a set of economic indicators for evaluating macroeconomic health

Illustration of Metrics, Ex Ante Review

		China 2030 emission peak	EU 1990 -40% by 2030	United States 2005 -26 to -28% by 2025
Emissions	versus 1990	<requires modeling=""></requires>	<directly observed=""></directly>	<directly observed=""></directly>
	versus 2005	<requires modeling=""></requires>	<directly observed=""></directly>	<directly observed=""></directly>
	versus 2025 BAU	<requires modeling=""></requires>	<requires forecast=""></requires>	<requires forecast=""></requires>
	versus 2030 BAU	<requires modeling=""></requires>	<requires forecast=""></requires>	<requires forecast=""></requires>
	Target year GHG/GDP	<requires modeling=""></requires>	<requires forecast=""></requires>	<requires forecast=""></requires>
	Δ(GHG/GDP) 2015-2025	<requires modeling=""></requires>	<requires forecast=""></requires>	<requires forecast=""></requires>
	Δ(GHG/GDP) 2015-2030	<requires modeling=""></requires>	<requires forecast=""></requires>	<requires forecast=""></requires>
Price	CO ₂	<requires modeling=""></requires>	<requires modeling=""></requires>	<requires modeling=""></requires>
	Fossil energy	<requires modeling=""></requires>	<requires modeling=""></requires>	<requires modeling=""></requires>
	Electricity	<requires modeling=""></requires>	<requires modeling=""></requires>	<requires modeling=""></requires>
Cost	cost versus BAU	<requires modeling=""></requires>	<requires modeling=""></requires>	<requires modeling=""></requires>
	cost/GDP	<requires modeling=""></requires>	<requires modeling=""></requires>	<requires modeling=""></requires>

Illustration of Metrics, Ex Post Review

		China 2030 emission peak	EU 1990 -40% by 2030	United States 2005 -26 to -28% by 2025
Emissions	versus 1990	<directly observed=""></directly>	<directly observed=""></directly>	<directly observed=""></directly>
	versus 2005	<directly observed=""></directly>	<directly observed=""></directly>	<directly observed=""></directly>
	versus 2025 BAU	<requires modeling=""></requires>	<requires modeling=""></requires>	<requires modeling=""></requires>
	versus 2030 BAU	<requires modeling=""></requires>	<requires modeling=""></requires>	<requires modeling=""></requires>
	Target year GHG/GDP	<directly observed=""></directly>	<directly observed=""></directly>	<directly observed=""></directly>
	Δ(GHG/GDP) 2015-2025	<directly observed=""></directly>	<directly observed=""></directly>	<directly observed=""></directly>
	Δ(GHG/GDP) 2015-2030	<directly observed=""></directly>	<directly observed=""></directly>	<directly observed=""></directly>
Price	CO_2	<requires modeling=""></requires>	<requires modeling=""></requires>	<requires modeling=""></requires>
	Fossil energy	<directly observed=""></directly>	<directly observed=""></directly>	<directly observed=""></directly>
	Electricity	<directly observed=""></directly>	<directly observed=""></directly>	<directly observed=""></directly>
Cost	cost versus BAU	<requires modeling=""></requires>	<requires modeling=""></requires>	<requires modeling=""></requires>
	cost/GDP	<requires modeling=""></requires>	<requires modeling=""></requires>	<requires modeling=""></requires>

Planning for Ex Post Review

- Identify ex ante the data and analytic needs for ex post review
 - Implement data collection protocols
- Promote advanced transparency of ex post review process so that countries and stakeholders can assess interim progress
- Identify ways to implement policies that facilitate causal inference

Implications for Negotiations

Implications for Negotiations

- Opportunities in voluntary information provision
 - Variation in INDCs could facilitate learning
 - Non-governmental experts can assess INDCs
- How do we transition to a rigorous, systematic approach to transparency?
 - Integration of ex ante/ex post analysis over time?
- Benchmarks for comparability?

Papers and Contact Information

Comparability of Effort in International Climate Policy, with W.A. Pizer, forthcoming, *Review of Environmental Economics and Policy* http://tinyurl.com/py2nuzr

The Crucial Role of Policy Surveillance in International Climate Policy. *Climatic Change* 126(3-4): 279-292, 2014 http://tinyurl.com/p57avgx

Policy Surveillance in the G-20 Fossil Fuel Subsidies Agreement: Lessons for Climate Policy, forthcoming, *Climatic Change* http://tinyurl.com/qd2olo3

Joe Aldy joseph_aldy@hks.harvard.edu http://www.hks.harvard.edu/fs/jaldy/index.html