
Zhzh

PAPER

JUNE 2017

Countering the
Proliferation
of Malware
Targeting the Vulnerability Lifecycle

Trey Herr

T H E C Y B E R S E C U R I T Y P R O J E C T

The Cyber Security Project

Belfer Center for Science and International Affairs

Harvard Kennedy School

79 JFK Street

Cambridge, MA 02138

www.belfercenter.org/Cyber

Statements and views expressed in this report are solely those of the authors and do not imply

endorsement by Harvard University, the Harvard Kennedy School, or the Belfer Center for Science

and International Affairs.

Design & Layout by Andrew Facini

Copyright 2017, President and Fellows of Harvard College

Printed in the United States of America

PAPER

JUNE 2017

T H E C Y B E R S E C U R I T Y P R O J E C T

Countering the
Proliferation
of Malware
Targeting the Vulnerability Lifecycle

Trey Herr

About the Author

Trey Herr, Ph.D, is a postdoctoral fellow with the Belfer Center’s Cyber
Security Project at the Harvard Kennedy School. His work focuses on
trends in state developed malicious software, the structure of criminal
markets for malware components, and the proliferation of malware. Trey is
co-editor of Cyber Insecurity—Navigating the Perils of the Next Information
Age, an edited volume on cybersecurity policy, and is a non-resident fellow
with New America’s Cybersecurity Initiative. He previously worked with
the Department of Defense to develop a risk assessment methodology
for information security threats. He holds a Ph.D. and M.A. in Political
Science from George Washington University and a B.S. in Theatre and
Political Science from Northwestern University.

Acknowledgements

This work gratefully acknowledges support from the Belfer Family and
the Flora and William Hewlett Foundation. Credit to Michael Sulmeyer
for his substantial contributions in style, prose, and structure to this
paper. Thank you to Annie Boustead and the Belfer Cybersecurity
Project workshop as well as Joseph Nye, Rob Morgus, Casey Ellis, Scott
Shackleford, Ben Buchanan, Ryan Ellis, Jessica Malekos Smith, Jim
Waldo, Charley Snyder, Katie Moussouris, Kate Bjelde, and Stuart
Russell for discussion and feedback.

Table of Contents

Executive Summary... 1

Introduction..2

Background on Export Controls Targeting Malicious Software..............5

Proposal: Shorten the Vulnerability Life Cycle...9

Conclusion..23

1Belfer Center for Science and International Affairs | Harvard Kennedy School

Executive Summary

States have turned to export controls to block the international trans-
fer of malicious software and limit its harmful effects. Based on the
nature of the software and the identity of the end user these controls
should, in theory, keep malware out of the hands of the worst actors
including those with sinister human rights aims. In practice, export
controls fail to check the transfer of malware because they ignore the
incentives of those who develop and use this software. Even worse, the
controls chill the work of legitimate security researchers, undermining
efforts to protect states and users from cyber threats and potentially
offering the basis for broader information controls.1 Recognizing these
shortcomings, a mix of academics, companies, and civil society groups
has attempted to reform the current export control regime. However,
even these modest reform efforts have produced only token changes.

A more effective proposal would limit the supply of vulnerabilities
available to attackers by reducing the amount of time any given
vulnerability is available for an attacker to use in malware. Doing
so will raise of the cost to build and acquire malicious software that
depend on vulnerabilities. Using the United States as a model for
implementation, this paper outlines ten recommendations to shorten
the life cycle of vulnerabilities clustered around four key activities:

1.	 Increase the number of software vulnerabilities
discovered by expanding the accessibility of bug
bounty programs to new companies, but narrow-
ing their scope to the most important bugs.

2.	 Increase the number of vulnerabilities disclosed by researchers
to software developers by reforming two important pieces
of federal law that currently chill security research.

1	 Sergey Bratus et al., “Why Wassenaar Arrangement’s Definitions of Intrusion Software and
Controlled Items Put Security Research and Defense At Risk—And How To Fix It” (Public
Comment, October 9, 2014), http://www.cs.dartmouth.edu/~sergey/drafts/wassenaar-pub-
lic-comment.pdf.

2 Countering the Proliferation of Malware: Targeting the Vulnerability Lifecycle

3.	 Increase the speed of patch issuance once developers learn of vul-
nerabilities in their products by improving transparency around
how long it takes software developers to issue security patches.

4.	 Increase the number of customers that apply patches to security
flaws once issued by software developers by improving transparency
around which companies apply patches – and which ones do not.

Introduction

The number of actors that employ malicious software to target, infect,
and manipulate computer systems is growing, as is the potential for these
actors to use malware to destroy and disrupt critical systems. States have
taken an indirect approach to combat this threat and limit the use of
malware by attempting to restrict the transfer of malware across borders
through export controls. The multilateral Wassenaar Agreement—origi-
nally designed to restrict the transfer of physical goods like explosives and
high strength metals—has been one of the primary vehicles through which
these export controls have been negotiated. In addition, the European
Union imposed its own regulations to control the transfer of malware,
emphasizing that “…the proposal will enhance the EU’s efforts to prevent
non-state actors from gaining access to sensitive items and will thus con-
tribute to the fight against terrorism…”.2

This is not the first-time that states have used export controls to limit the
transfer of software. In the 1980s though the mid 1990s several countries,
led by the United States, tried to use export controls to prevent terrorist
groups and adversary states from gaining access to cryptographic tech-
nologies. Countries worked through several international agreements,
including a predecessor institution to the Wassenaar Agreement. How-
ever, these efforts yielded little success as export controls failed to block
an explosion in the type and variety of cryptographic software developed

2	 European Commission, “Proposal for a Regulation of the European Parliament and of the Council
Setting up a Union Regime for the Control of Exports, Transfer, Brokering, Technical Assistance
and Transit of Dual-Use Items,” COM(2016) 616 final § (2016), 2, http://trade.ec.europa.eu/doclib/
docs/2016/september/tradoc_154976.pdf.

3Belfer Center for Science and International Affairs | Harvard Kennedy School

around the world.3 In fact, one of the only lasting impacts to come from
these controls were legal requirements for companies to intentionally use
weaker security technologies, allowing attackers access to some protected
communications.4

Attempts to block the transfer of malware with export controls are likely to
see similar results as those targeting cryptography: little success and harm-
ful unintended consequences. There are at least three reasons for this. First,
it is difficult to define the intent of a software program outside of how it is
used thus it is hard to define good vs. bad software suitable for an export
control. Second these controls largely ignore criminal groups and indi-
viduals beyond the control’s jurisdiction thus missing significant sources
of malware. Third, even if export controls could be designed and imple-
mented, they pose the risk of harming defensive companies and blocking
researchers from collaborating and sharing information.

This paper proposes a better way to limit the use of malware - making it
more expensive to build, maintain, and acquire by shrinking the supply of
software vulnerabilities available to attackers. This can be accomplished by
increasing the pace of vulnerability discovery, disclosure, patch develop-
ment, and patch application, to shorten the vulnerability life cycle. With a
shorter life cycle, useful vulnerabilities will become scarcer and thus cost-
lier. These recommendations cluster around four key activities:

Improving the quality of vulnerability discovery:

•	 The Department of Homeland Security (DHS) should provide
matching funds to private bounties in the event of disclosure of
an entire class or method to defeat an exploitation technique.

3	 Bruce Schneier, Kathleen Seidel, and Saranya Vijayakumar, “A Worldwide Survey of Encryption
Products,” Berkman Center Research Publication, no. 2016–2 (2016), http://papers.ssrn.com/sol3/
papers.cfm?abstract_id=2731160.

4	 Part of the US sponsored restrictions were to limit cryptographic keys to a size which could be
confidently broken by the National Security Agency. These limits would later enable attacks on
encrypted communications between websites and users. For an example, see Bodo Möller, Thai
Duong, and Krzysztof Kotowicz, “This POODLE Bites: Exploiting The SSL 3.0 Fallback” (Google,
September 2014), https://www.openssl.org/~bodo/ssl-poodle.pdf.

4 Countering the Proliferation of Malware: Targeting the Vulnerability Lifecycle

•	 DHS should work with the Core Infrastructure Initiative
to fund a public bug bounty for orphaned software and
codebases critical to the internet like OpenSSL.

•	 The Congress should make bug bounty programs and all
their associated payouts tax deductible to encourage wider
bounty adoption and higher payouts for vulnerabilities.

Increasing the likelihood of vulnerability disclosure:

•	 The Congress should reform the Computer Fraud and
Abuse Act (CFAA) to reduce the chance of criminal
and civil penalties for good-faith security research.

•	 The Librarian of Congress should permanently exempt good-faith
security research from action under the Digital Millennium
Copyright Act (DMCA), removing software vendor’s ability to sue
researchers who discover and disclose flaws in their products.

Encouraging more rapid and effective patch development,

•	 The National Institute of Standards and Technology (NIST)
should develop standards to evaluate patch development
availability performance from vendors and work with the
Office of Management and Budget (OMB) to integrate
these standards into Federal software procurement require-
ments to give preference to high performing firms.

•	 DHS and the National Science Foundation (NSF) should
collaborate to rapidly award small grants, up to $1 million, to
researchers with proofs of concept for new defensive techniques
in software and help transition these concepts to practice.

•	 The US Computer Emergency Response Team (US-CERT)
and Federal Trade Commission (FTC) should track and
publish patch quality and development time for vendors
as well as validation time for secondary vendors.

5Belfer Center for Science and International Affairs | Harvard Kennedy School

Improving market transparency and speed in applying patches,

•	 NIST should develop standards for patch application including
categories specific to industry type and organization size, then work
with OMB to integrate these into federal contracting standards.

•	 The SEC should require that companies doing business
in the United State annually disclose the number of
vulnerabilities reported in their software and the delay
associated with patching each of these flaws as well as the
use of any software no longer supported by the vendor.

The remainder of this paper summarizes the challenges of using export
controls against malicious software, explores the basis for the proposed
recommendations, and then develops each in more detail. After highlight-
ing several counter-arguments, the paper concludes with an explanation
of how these recommendations fit into the broader cybersecurity policy
debate.

Background on Export Controls
Targeting Malicious Software

Most formal efforts to limit the use of malware have taken place through
export controls. Countries appear unwilling or unable to create new insti-
tutions and so are adapting old ones to suit their purpose. In 2013, the
UK and French governments proposed adding new controls to the Was-
senaar Arrangement to target malicious software. 5 6 These changes were

5	 James Gannon, “Wassenaar: Turning Arms Control into Software Control,” Internet Governance
Project, May 25, 2015, http://www.internetgovernance.org/2015/05/25/wassenaar-turn-
ing-arms-control-into-software-control/.

6	 Wassenaar covers ‘intrusion software’ which is defined as “‘Software’ specially designed or
modified to avoid detection by ‘monitoring tools’, or to defeat ‘protective countermeasures’, of a
computer or network-capable device, and performing any of the following: [a] The extraction of
data or information, from a computer or network capable device, or the modification of system or
user data or [b] The modification of the standard execution path of a program or process in order
to allow the execution of externally provided instructions”. Wassenaar doesn’t restrict this intrusion
software but controls all products, technology, and software used to develop, support, maintain,
or communicate with it. Much of this software could be employed as a component for malware,
underlining the difficulty in crafting careful legal definitions of malicious software.

6 Countering the Proliferation of Malware: Targeting the Vulnerability Lifecycle

quickly, and unanimously, adopted by the Wassenaar member-states. The
Arrangement is a voluntary international legal framework; it has no direct
enforcement authority but serves as a regular forum for countries to coor-
dinate the products and services restricted in their domestic export laws.7
Two years after the change to Wassenaar, the European Union proposed
to list malware as a controlled item under its own export regulations.8 The
proposed EU rules mention human rights but repeatedly return to the
goal of national and international security, emphasizing that “the need
to protect national security and public morals, in consideration of the
proliferation of cyber-surveillance technologies whose misuse poses a risk to
international security as well as the security of the EU…”.9 10

In each of these cases, the export controls either explicitly mention pro-
liferation or are part of an institution designed to block proliferation. The
Wassenaar Arrangement is one of a constellation of non-proliferation
institutions and requires that its members submit to the Treaty on the
Non-Proliferation of Nuclear Weapons among others. The EU’s dual use
controls, as well as the discussions of the United Nation’s Group of Govern-
ment Experts (GGE) in their 2016-17 session, explicitly employ the phrase
proliferation when discussing how to limit the use of malware.11 This
choice of language may be an attempt to build an analogy to nuclear weap-
ons or, more likely, is a holdover from dealing with cybersecurity issues in
forums developed to prevent the spread of sensitive weapons technology.
Non-proliferation describes attempts to prevent the acquisition of capabil-
ities by actors, e.g. blocking the acquisition of a weapon or fissile material.
Counter-proliferation, by contrast, attempts to reduce the utility of capa-
bilities already in these actor’s possession. The distinction looks something

7	 These changes were implemented in all Wassenaar member states but the United States. In the
U.S., public feedback during notice and comment periods for the new regulations spurred an Amer-
ican attempt to modify the text of the controls in Wassenaar itself.

8	 Meredith Rathbone et al., “Potential Changes to the EU Dual-Use Export Control Regime, Including
Cybertechnology” (Steptoe & Johnson LLP, September 13, 2016), http://www.steptoe.com/publi-
cations-11489.html.

9	 Author’s italics. European Commission, Proposal for a Regulation of the European Parliament and
of the Council setting up a Union regime for the control of exports, transfer, brokering, technical
assistance and transit of dual-use items, 9.

10	 Malicious software, what the EU document terms “cyber-surveillance tools”, is covered by a catch-
all control that applies restrictions to any items where there is potential for misuse. This massively
expands the potential scope of the EU controls.

11	 Jim Lewis and Kerstin Vignard, “Report of the International Security Cyber Issues Workshop
Series” (UNIDIR, August 2016), http://www.unidir.org/files/publications/pdfs/report-of-the-inter-
national-security-cyber-issues-workshop-series-en-656.pdf.

7Belfer Center for Science and International Affairs | Harvard Kennedy School

like attempting to block a state from building a nuclear device vs. crippling
the delivery and guidance systems for that weapon.

Efforts to craft export controls for malicious software that resemble a
non-proliferation regime are likely to fail. This is because, unlike nuclear
weapons which very few states had (or have), nearly everyone has the capa-
bility to build or buy a piece of malware. There are three problems with
the export controls approach to limiting malware use. First, it is difficult
to identify software as malicious prior to use so controls are difficult to
design. Second, where controls could be successfully implemented, they
are aimed at legal business entities and researchers, leaving out criminal
groups and other significant sources of malware. Third, even if the controls
could be effectively designed and implemented, they pose daunting legal
hurdles to the defensive cybersecurity community. These three problems
cascade, export controls are hard to make work, are generally pointed the
wrong way, and even when working and properly oriented they make life
harder (rather than easier) on defenders.

Designing Controls is Difficult

Identifying intent in software is difficult before it is used, creating chal-
lenges for the design of legal restrictions like export controls. Using export
laws designed for weapons is thorny territory because categorizing mal-
ware solely as a weapon is inaccurate. Unlike a shoulder mounted missile
or rifle, whose purpose to violence is clear, much of what makes up mal-
ware is ambiguous with respect its intended use. One prominent example
of this is the Metasploit framework, a popular collection of open source
penetration testing tools developed by H.D. Moore and now maintained
by the Boston-based information security company Rapid7.12 Metasploit
includes the same software tools necessary to break into and manipulate a
computer system as could be used by defenders to protect that very same
machine.

12	 Jim O’Gorman, Devon Kearns, and Mati Aharoni, Metasploit: The Penetration Tester’s Guide (No
Starch Press, 2011).

8 Countering the Proliferation of Malware: Targeting the Vulnerability Lifecycle

Export Controls Ignore the Malware Markets

Export controls are generally focused on legal businesses, and so miss large
sources of malware such as criminal groups. Even if information transfer
across borders could be precisely limited, export regulations would only
restrict malware transferred by companies and individuals under the juris-
diction of these regulations. For example, in the case of the Wassenaar
Arrangement, this fails to address all criminal groups and the more than a
hundred countries not among the Arrangement’s members. It is impracti-
cal to guarantee only legal actors have access to the controlled information;
many software tools widely available for free on the internet can encrypt or
delete data beyond recovery.13 There is a healthy malware economy where
a globally diverse population of groups, including companies, criminal
groups, and individuals, build and sell malicious software.14 It does not
take rare technical skills even to create malware that can deliver destructive
physical effects.15 Software vulnerabilities and information on potential tar-
gets can be found throughout the malware markets. 16

Making Life Harder on Defenders

Export controls also impose a potentially debilitating burden on inde-
pendent researchers and defenders in cybersecurity. Knowledge about
malware’s components – particularly software vulnerabilities – can be of
great use in securing computer systems. Researchers, within both compa-
nies and the broader community, will often exchange new malware samples

13	 Raiu, “Destructive Malware - Five Wipers in the Spotlight - Securelist,” December 18, 2013, https://
securelist.com/blog/incidents/58194/destructive-malware-five-wipers-in-the-spotlight/.

14	 Trey Herr, “Malware Counter-Proliferation and the Wassenaar Arrangement,” in 2016 8th Interna-
tional Conference on Cyber Conflict: Cyber Power (CyCon, Tallinn, Estonia: IEEE, 2016), 175–90,
https://ccdcoe.org/cycon/2016/proceedings/12_herr.pdf.

15	 Though doing so repeatedly, autonomously, or with a high degree of confidence about the effects
does require substantial investment in intelligence collection, development, and testing infrastruc-
ture.

16	 Lillian Ablon, Martin C. Libicki, and Andrea A. Golay, Markets for Cybercrime Tools and Stolen
Data: Hackers’ Bazaar (Rand Corporation, 2014), http://www.rand.org/content/dam/rand/pubs/
research_reports/RR600/RR610/RAND_RR610.pdf; Kurt Thomas, et al., “Framing dependencies
introduced by underground commoditization.” Proceedings (online) of the Workshop on Economics
of Information Security (WEIS), 2015.; Trey Herr and Ryan Ellis, “Disrupting Malware Markets” 105-
122 in Richard Harrison and Trey Herr, eds., Cyber Insecurity: Navigating the Perils of the Next Infor-
mation Age (Lanham, MD: Rowman & Littlefield, 2016), https://books.google.com/books?id=NAp-
7DQAAQBAJ&source.

9Belfer Center for Science and International Affairs | Harvard Kennedy School

across time zones as they are working.17 This allows for continuous effort,
twenty-four hours a day, to understand these samples and craft defenses
against them. Export controls restrict this information from moving across
borders. Export controls can easily trample on important defensive activi-
ties and unnecessarily limit harmless software through catch-all provisions
like the one suggested by the EU. 18

Proposal: Shorten the
Vulnerability Life Cycle

Instead of using export controls to block malware transfer, states should
work to change attacker’s incentives to build and acquire malicious soft-
ware to begin with. Malware does not exist in a vacuum; it is created by
individuals and organizations with recognizable incentives and resource
limitations. Software vulnerabilities are a building block for many kinds
of malware. From destructive attacks like Stuxnet to espionage operations
like Red October and even common surveillance tools, malware often use
vulnerabilities to gather information about targets, gain access to computer
systems, and maintain access on networks.19 Reducing the supply of these
vulnerabilities would limit those available to attackers and increase the cost
necessary to acquire them.

Shortening the vulnerability life cycle to shrink this vulnerability supply
requires improving how rapidly vulnerabilities are discovered, disclosed,
and patched. This entails discovering vulnerabilities in software so that
they can be disclosed to vendors, rather than sold to malicious actors. Once

17	 Katie Moussouris, conversations with the author – 19OCT16 and 3MAY17

18	 Bratus et al., “Why Wassenaar Arrangement’s Definitions of Intrusion Software and Controlled
Items Put Security Research and Defense At Risk—And How To Fix It.”

19	 Nicolas Falliere, Liam O. Murchu, and Eric Chien, “W32. Stuxnet Dossier” (Symantec, 2011), http://
www.h4ckr.us/library/Documents/ICS_Events/Stuxnet%20Dossier%20(Symantec)%20v1.4.pdf;
Ralph Langner, “Langner - To Kill a Centrifuge.pdf” (The Langner Group, November 2013), http://
www.langner.com/en/wp-content/uploads/2013/11/To-kill-a-centrifuge.pdf; Kaspersky, “‘Red Oc-
tober’. Detailed Malware Description,” Securelist.com, January 17, 2013, http://www.securelist.com/
en/analysis/204792265/Red_October_Detailed_Malware_Description_1_First_Stage_of_Attack#1;
Bill Marczak and John Scott-Railton, “The Million Dollar Dissident: NSO Group’s iPhone Zero-Days
Used against a UAE Human Rights Defender,” The Citizen Lab, August 24, 2016, https://citizenlab.
org/2016/08/million-dollar-dissident-iphone-zero-day-nso-group-uae/; Stefan Esser, “PEGASUS
iOS Kernel Vulnerability Explained | SektionEins GmbH,” SektionEins, September 2, 2016, http://
sektioneins.de/en/blog/16-09-02-pegasus-ios-kernel-vulnerability-explained.html.

10 Countering the Proliferation of Malware: Targeting the Vulnerability Lifecycle

known, software owners can work through the patch development process
to produce a fix and push to have that patch applied by users and organiza-
tions to protect themselves. Improving any one step in this cycle does not
do enough to constrain vulnerability supply; just finding and even disclos-
ing vulnerabilities does little good without systematic improvement in the
patching process.20

These efforts would shrink the supply of vulnerabilities available to attack-
ers, raising the cost to build, maintain, and acquire malware which relies
on these vulnerabilities. By raising the cost to build and acquire malware,
groups with few resources might avoid well-defended targets or be put out
of business altogether. Less cost-sensitive organizations, like major intelli-
gence agencies, might be forced to change tactics or accept higher risk of
discovery and compromise.

This proposal has several advantages for limiting malware use over the
export controls approach. First, shortening the vulnerability life cycle
bypasses the need to determine software’s intent because it accelerates the
flow of all information to defenders, rather than trying to identify and
block only malicious software. Second, the policy recommendations out-
lined below would impact the entire malware economy, not just companies
and individuals under a state’s jurisdiction. This would help move state’s
focus away from malware sales and towards the more relevant and pressing
issue of malware’s use. Third, this proposal’s emphasis on vulnerability dis-
covery, disclosure, and patching amplifies existing defensive activities. This
puts policymakers in the position of reinforcing and expanding the work
already being done to secure against malicious software instead of trying to
carefully avoid curtailing it. In addition, nothing in this proposal requires
limiting information flows across borders and so presents little threat to be
used as a basis for further information controls or outright censorship.21

20	 Adam Segal, “Using Incentives to Shape the Zero-Day Market,” Cyber Brief (New York City:
Council on Foreign Relations, September 2016), http://www.cfr.org/cybersecurity/using-incen-
tives-shape-zero-day-market/p38294.

21	 These recommendations align with similar made by Sandro Gaycken and Felix Lindner and those
of a CSIS Cyber Task Force in 2017 including Federal matching funds for private bounty programs
and improving laws that might govern disclosure - Sandro Gaycken and Felix Lindner, “Zero-Day
Governance: An (Inexpensive) Solution to the Cyber-Security Problem,” in Cyber Dialogue 2012
(University of Toronto, 2012), http://www.cyberdialogue.citizenlab.org/wp-content/uploads/2012/
2012papers/CyberDialogue2012_gaycken-lindner.pdf; Jim Lewis et al., “From Awareness to Action -
A Cybersecurity Agenda for the 45th President” (Washington, D.C.: CSIS, January 5, 2017), https://
www.csis.org/programs/technology-policy-program/cybersecurity/csis-cyber-policy-task-force.

11Belfer Center for Science and International Affairs | Harvard Kennedy School

The remainder of this section outlines ten specific policy recommendations
that are modeled in the United States, but could be well replicated in other
countries.

Discovery

The key policy challenge in vulnerability discovery is to drive attention to
the highest impact software flaws. The recommendations in this section
are designed to increase the overall number of vulnerabilities discovered
while emphasizing major commercial applications and software criti-
cal to the internet, like open-source cryptographic libraries. One insight
from increasingly public efforts to find vulnerabilities and disclose them
to vendors is that a very small minority of these bug-hunters account for
a significant percentage of flaws discovered in software.22 Increasing the
incentives this upper tier of talented researchers have to focus on import-
ant targets will help increase the rate at which the most impactful bugs are
found.23 Bug bounties, widely accepted means of providing financial incen-
tives to researchers who discover vulnerabilities, can be used as a way to
drive attention to the most important software flaws.24

1.	 Create New Incentives to Discover Bug Classes

Policies should encourage discovery of vulnerability classes, flaws
that could be replicated across many different pieces of software.
The Department of Homeland Security (DHS) should provide
funding to match private sector bounties paid out in the instances
of disclosure for an entire class or method to end an exploitation
technique. This would complement payouts from programs like
Google’s Vulnerability Rewards or Apple’s Bug Bounty. There is a

22	 BugCrowd, “The State of Bug Bounty” (BugCrowd, June 2016), https://pages.bugcrowd.com/
hubfs/PDFs/state-of-bug-bounty-2016.pdf; HackerOne, “The 2016 Bug Bounty Hacker Report”
(HackerOne, September 13, 2016), https://hackerone.com/blog/bug-bounty-hacker-report-2016;
Katie Moussouris and Michael Siegel, “The Wolves of Vuln Street: The 1st Dynamic Systems Model
of the 0day Market” (RSA, 2015), https://www.rsaconference.com/events/us15/agenda/ses-
sions/1749/the-wolves-of-vuln-street-the-1st-dynamic-systems.

23	 Impactful in this sense meaning some combination of the bug’s ease of discoverability, its exploit-
ability, and the resulting severity of its use.

24	 Andi Wilson et al., “Bugs in the System” (New America Open Technology Institute, 2016), https://
na-production.s3.amazonaws.com/documents/Bugs-in-the-System-Final.pdf.

12 Countering the Proliferation of Malware: Targeting the Vulnerability Lifecycle

risk that this program could pay individuals willing to disclose a bug
today but who might sell another flaw to a malicious actor tomorrow.
However, this is the risk borne by any bug bounty and not a novel
problem for government programs funding non-state groups.

2.	 Implement Public Bug Bounties for Core Software

DHS should develop a public bounty program to incentivize vulnera-
bility discovery in orphaned codebases, those no longer supported by
a vendor, and software critical to the internet, like OpenSSL, Nginx,
and OpenSSH. Run in conjunction with the Core Infrastructure
Initiative, this bounty would help defend the central resources of the
internet’s architecture and care for abandoned code. 25 Focusing bounty
programs on these central resources may not add tremendously to the
defensive efforts of individual targets but would help reduce the use of
the internet’s trusted infrastructure as a pathway to attack over time.
A comparable effort is being piloted in the European Union, where
funding for a program to audit open source software in use by the EU
has been expanded to support a short-term bug bounty program.26

3.	 Encourage Bounty Programs Through Tax Policy

Congress should make bug bounty payouts tax-deductible.
This would encourage the expansion of these programs within
existing firms and drive their adoption by a wider range of
companies. This tax-deductibility would also leave room for
bounty payouts to improve, at least marginally, relative to prices
paid by criminal and state buyers elsewhere.27 Expanding the
number of bounty programs is a way to leverage a wider net-
work of vulnerability researchers against malicious actors. The
result is a more flexible and responsive security marketplace.

25	 Similar in scope to the Internet Bug Bounty program - https://internetbugbounty.org/. Core Infra-
structure Initiative - https://www.coreinfrastructure.org/.

26	 Lucian Armasu, “European Parliament Doubles Budget For ‘Free’ Software Audit and Bug Bounty
Projects,” Tom’s Hardware, December 1, 2016, http://www.tomshardware.com/news/eu-software-
audit-bug-bounty,33123.html.

27	 Rainer Böhme, “Vulnerability Markets,” in Proceedings of 22C3, vol. 27, 2005, 30, https://www.wi1.
uni-muenster.de/security/publications/Boehme2005_22C3_VulnerabilityMarkets.pdf.

https://internetbugbounty.org/
https://www.coreinfrastructure.org/

13Belfer Center for Science and International Affairs | Harvard Kennedy School

Disclosure

Public policy and law should encourage, not discourage, individuals and
groups who discover vulnerabilities to disclose them to software developers
to be fixed. Anything else reinforces a cycle of insecurity where flaws are
more often used for malicious ends. Small security firms, academic groups,
and independent security researchers regularly bring new vulnerabilities to
light through independent audits, hacking competitions, and bug bounty
programs.28 Some companies – including Mozilla, who initiated one of the
first bug bounties – provide opportunities for researchers to disclose their
findings without fear of legal retribution. Others companies – like Oracle,
which often protests the notion of bounties – are infamous for their lack-
luster or outright retaliatory response to vulnerabilities disclosed to them.29
The consequences of a bad response to disclosure will grow as companies
responsible for software ensuring human safety, like automotive and med-
ical device manufacturers, become more prominent.30 Reforming laws that
impact disclosure and encouraging greater adoption of bounty programs
will increase the number of vulnerabilities made known to vendors instead
of sold to malicious actors.31

28	 Gregg Keizer, “Single Code Typo Triggers Massive Internet Explorer Hack Attacks,” IT Business,
August 4, 2009, http://www.itbusiness.ca/news/single-code-typo-triggers-massive-internet-ex-
plorer-hack-attacks/13806; Dan Goodin, “All Four Major Browsers Take a Stomping at Pwn2Own
Hacking Competition,” Ars Technica, March 20, 2015, http://arstechnica.com/security/2015/03/
all-four-major-browsers-take-a-stomping-at-pwn2own-hacking-competition/; Matthew Finifter,
Devdatta Akhawe, and David Wagner, “An Empirical Study of Vulnerability Rewards Programs,”
in USENIX Security, 2013, https://www.usenix.org/system/files/conference/usenixsecurity13/
sec13-paper_finifter.pdf.

29	 Steven Lynch, “Full Disclosure: Infosec Industry Still Fighting Over Vulnerability Reporting,”
OpenDNS Umbrella Blog, October 16, 2015, https://blog.opendns.com/2015/10/16/full-disclo-
sure-infosec-industry-still-fighting/; “That Java Vulnerability and the Full Disclosure Debate,” Infos-
ecurity Magazine, August 20, 2012, http://www.infosecurity-magazine.com/news/that-java-vulner-
ability-and-the-full-disclosure/.

30	 Kim Zetter, “Researchers Hacked a Model S, But Tesla’s Already On It,” WIRED, August 6, 2015,
https://www.wired.com/2015/08/researchers-hacked-model-s-teslas-already/; Risk Based
Security, “Uncoordinated Vulnerability Disclosure Causing Heart Palpitations For St. Jude
Medical Shareholders,” Risk Based Security, August 26, 2016, https://www.riskbasedsecurity.
com/2016/08/uncoordinated-vulnerability-disclosure-causing-heart-palpitations-for-st-jude-med-
ical-shareholders/.

31	 Bounties and related payout programs are unlikely to work alone in resolving the underlying
insecurity of most software but they remain a valuable way to attract vulnerabilities to vendors and
help researchers learn how to better secure software - Mingyi Zhao, Jens Grossklags, and Peng Liu,
“An Empirical Study of Web Vulnerability Discovery Ecosystems,” in Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security (ACM, 2015), 1105–1117, http://
dl.acm.org/citation.cfm?id=2813704.

14 Countering the Proliferation of Malware: Targeting the Vulnerability Lifecycle

4.	 Protect Good-Faith Research and Disclo-
sure from Copyright Protections

The Library of Congress should make permanent a recent
three-year exemption for security researchers under the Digital
Millennium Copyright Act (DMCA) - 17 USC 1201.32 The DMCA
is a 1998 U.S. law criminalizing the act of circumventing protec-
tions on copyrighted works, like proprietary software. The new
exemption shields those who circumvent manufacturer protections
during good-faith security research, for example, after disclosing a
vulnerability in a braking system.33 Making the current temporary
exemption permanent would remove one avenue for companies
to unfairly punish researchers looking for vulnerabilities in their
products. The Electronic Frontier Foundation (EFF) is currently
suing the U.S. government to modify the DMCA for exactly this
purpose, representing a computer scientist at Johns Hopkins
University who audits software and discovers vulnerabilities.34

5.	 Reform the Computer Fraud and Abuse Act (CFAA)

Congress should reform the Computer Fraud and Abuse Act
(CFAA) - 18 USC 1030. Specifically, such reforms should 1) intro-
duce an intent-based exemption for good-faith security research
leading to disclosure and 2) remove the provision for civil liability
from 1030 (g).35 The intent based exemption would eliminate the
potential for criminal penalties in the event of good-faith research

32	 Direct change to the statute is welcome as well but working through the Librarian engenders less
potential for disruption as compared to working through the legislative process. The Librarian of
Congress is empowered to review specific exemptions to the law every three years.

33	 Jen Ellis, “New DMCA Exemption Is a Positive Step for Security Researchers,” Rapid7 - Information
Security, October 28, 2015, https://community.rapid7.com/community/infosec/blog/2015/10/28/
new-dmca-exemption-is-a-positive-step-for-security-researchers; Charlie Miller and Chris Valasek,
“Remote Exploitation of an Unaltered Passenger Vehicle” (Illmatics, 2015), http://illmatics.com/
Remote%20Car%20Hacking.pdf.

34	 Karen Gullo, “EFF Lawsuit Takes on DMCA Section 1201: Research and Technology Restrictions
Violate the First Amendment,” Electronic Frontier Foundation, July 21, 2016, https://www.eff.org/
press/releases/eff-lawsuit-takes-dmca-section-1201-research-and-technology-restrictions-violate.

35	 Paul Ohm, “The Computer Fraud and Abuse Act: Structure, Controversies, and Proposals for
Reform” in Cyber Insecurity eds. Rich Harrison and Trey Herr, Rowman & Littlefield, 2016; Jen Ellis,
“How Do We De-Criminalize Security Research?,” Rapid7 - Information Security, January 26, 2015,
https://community.rapid7.com/community/infosec/blog/2015/01/26/how-do-we-de-criminalize-
security-research-aka-what-s-next-for-the-cfaa.

15Belfer Center for Science and International Affairs | Harvard Kennedy School

efforts.36 As for civil liability, 1030 (g) provides for relief to parties
who can show damage or loss under the criminal provisions of the
statute. This gives companies a second means to punish researchers
who have discovered vulnerabilities in their products. Removing
the provision for civil liability would help limit the range of legal
measures companies can use to suppress the discovery of vulner-
ability information. These changes will help encourage those who
discover vulnerabilities to disclose them to developers instead of
keeping this information secret or selling it to malicious actors.

Patch Development

The discovery and proper disclosure of vulnerabilities does little to limit
the use of malware unless these vulnerabilities are patched. Patching is
the process by which a software developer creates a fix for a vulnerability
and distributes it to users to update their software.37 Occasionally, a patch
might disrupt software’s original functionality so developers must take time
to design fixes that work and create no new flaws.38 The time it takes to
develop a patch can be critical; if a vulnerability is being actively exploited,
and there is no patch available, organizations have little recourse to pro-
tect themselves other than to turn off devices. In the case of critical safety
systems or medical equipment, even this may not be an option. The time
between a vulnerability’s discovery and the availability of a patch is one of
the highest risk periods in the vulnerability life cycle as attackers are gener-
ally faster at writing exploits for these software flaws than companies are at
developing patches.39

36	 Edward J McAndrew et al., “Ninth Circuit Vastly Expands Scope of Criminal, Civil Liability for Com-
puter Fraud” (Ballard Spahr LLP, July 15, 2016), http://www.ballardspahr.com/alertspublications/
legalalerts/2016-07-15-ninth-circuit-vastly-expands-scope-of-criminal-civil-liability-for-computer-
fraud.aspx.

37	 Peter Mell, Tiffany Bergeron, and David Henning, “Creating a Patch and Vulnerability Management
Program,” NIST Special Publication 800 (2005): 40.

38	 Jared Newman, “Windows 7 Users Urged to Uninstall Broken Update That Wreaks Havoc on Soft-
ware,” PCWorld, December 12, 2014, http://www.pcworld.com/article/2859120/windows-7-users-
urged-to-uninstall-broken-update-that-wreaks-havoc-on-software.html.

39	 Stefan Frei et al., “Large-Scale Vulnerability Analysis,” in Proceedings of the 2006 SIGCOMM
Workshop on Large-Scale Attack Defense (ACM, 2006), 131–138, http://dl.acm.org/citation.
cfm?id=1162671; Muhammad Shahzad, Muhammad Zubair Shafiq, and Alex X. Liu, “A Large Scale
Exploratory Analysis of Software Vulnerability Life Cycles,” in Proceedings of the 34th Internation-
al Conference on Software Engineering (IEEE Press, 2012), 771–781, http://dl.acm.org/citation.
cfm?id=2337314.

16 Countering the Proliferation of Malware: Targeting the Vulnerability Lifecycle

Patching demands a balance between speed and precision but not all
patches are created equal. Some ‘shallow vulnerabilities’ are easy to find
and simple to fix. One patch may make small changes to break a known
exploit without fixing the underlying vulnerability while another requires
complex engineering efforts to change an entire feature in the software. The
Heartbleed vulnerability in OpenSSL required a relatively straightforward
fix though it was widely used so applying that patch took time.40 By con-
trast, a 2013 vulnerability in Java was deeply embedded in the language’s
design.41 Oracle, the company trying to sell Java, took more than two years
to design and release a fix. Even then, their patch was incomplete and
turned out to be only a temporary solution.42

Patch development involves more than just the original developer as com-
panies whose software depends on the patched code must often validate
that patch. For example, if Microsoft issues a patch for Windows 10, then
the vendor who builds database software relying on the operating system
needs to verify that the patch does not break their product. The database
software company tests the patch to see that it does not introduce any new
security flaws or break functionality but this process takes time. During the
delay waiting for validation, customers often can’t apply the patch as many
software vendors will void the warranty on a product if the user applies a
patch that has not been validated. There are no consensus public standards
by which to judge this patch development performance and, as a result, no
quick or transparent means to identify those who patch well.43 But this can
be remedied.

40	 Zakir Durumeric et al., “The Matter of Heartbleed,” in Proceedings of the 2014 Conference on Inter-
net Measurement Conference, IMC ’14 (New York, NY, USA: ACM, 2014), 475–488, http://dl.acm.
org/citation.cfm?id=2663755.”plainCitation”:”Zakir Durumeric et al., “The Matter of Heartbleed,” in
Proceedings of the 2014 Conference on Internet Measurement Conference, IMC ’14 (New York, NY,
USA: ACM, 2014

41	 Art Manion, “Anatomy of Java Exploits,” CERT/CC Blog - Vulnerability Insights, January 15, 2013,
https://insights.sei.cmu.edu/cert/2013/01/anatomy-of-java-exploits.html.

42	 Abraham Marín Pérez, “Vulnerability in Java Reflection Library Fixed after 30 Months,” InfoQ, April
28, 2016, https://www.infoq.com/news/2016/04/java-reflection-vulnerability.

43	 Stefan Frei, Bernhard Tellenbach, and Bernhard Plattner, “0-Day Patch-Exposing Vendors
(in) Security Performance,” BlackHat Europe, 2008, http://www.techzoom.net/publica-
tions/0-day-patch/.

17Belfer Center for Science and International Affairs | Harvard Kennedy School

6.	 Measure and Reward Good Patch Development Performance

The National Institute of Standards and Technology (NIST)
should develop and publish standards to judge patch devel-
opment performance. These would measure the time between
disclosure and the public availability of a patch as well as
how often those patches had to be rolled back and modified
then released again. The Office of Management and Budget
(OMB), through its participation in the Enterprise Software
Category Team (ESCT) alongside the DoD, General Services
Administration (GSA), and NIST, should then integrate
those standards as a set of performance tiers in new software
contract vehicles.44 The aim of these tiers is to award graduated
preference in federal software acquisition for companies with
more rapid and effective patch development practices.45

7.	 Fund New Mitigations and Defensive Techniques

Government should incentivize the development and imple-
mentation of new defensive techniques. In developing a patch,
companies and open source projects sometimes have a choice
between a rapid but incomplete fix, to break a known exploit, or
a longer-term mitigation that resolves the underlying software
bug and others like it. Identifying new defensive techniques
to make these longer-term fixes can be difficult but often has
benefit across multiple software products. Address Space Layout
Randomization (ASLR), first developed for use in the Linux kernel
in 2001, works to randomize the location of software instructions
in memory so they cannot be readily predicted and manipulated
by an attacker. ASLR spread to many operating systems after its
creation and has had a substantial impact on software security.46

44	 Anne Rung and Tony Scott, “Category Management Policy 16-1: Improving the Acquisition and
Management of Common Information Technology: Software Licensing,” OMB Memorandum
(Washington, D.C.: Office of Management and Budget, June 2, 2016), https://obamawhitehouse.
archives.gov/sites/default/files/omb/memoranda/2016/m-16-12_1.pdf.

45	 While financial penalties are not suggested here, sanctions between private sector parties could
be possible as patch application standards are integrated into private sector best practices and
security frameworks.

46	 Hector Marco-Gisbert and Ismael Ripoll, “On the Effectiveness of Full-ASLR on 64-Bit Linux,” in
DeepSec, 2014, http://cybersecurity.upv.es/attacks/offset2lib/offset2lib-paper.pdf.

18 Countering the Proliferation of Malware: Targeting the Vulnerability Lifecycle

DHS, together with the National Science Foundation, should
award small grants (under $1 million) to researchers and orga-
nizations who have developed or have working proof of concept
for new defensive techniques. This award process should also
facilitate a connection between researchers and developers to
transition the concept to practice in production software.

8.	 Rate Patch Validation Performance

The US Computer Emergency Response Team (US-CERT), in con-
junction with the Federal Trade Commission (FTC), should record
and publish the time between initial patches and their validation
by secondary vendors and open source projects. The Department
of Commerce should convene a multi-stakeholder process, like the
Vulnerability Disclosure working group, to develop transparent
standards to evaluate patch validation performance using this
data. Where feasible, all parties should encourage the adoption of
these standards and performance data by private sector actors.47

47	 Such a working group like approach could also be the basis for developing patch development and
application standards.

19Belfer Center for Science and International Affairs | Harvard Kennedy School

Patch Application

Discovery, disclosure, and patch development help address the early and
middle stages of the vulnerability life cycle but organizations often fail to
apply patches. A 2015 report found that 99.9% of vulnerabilities observed
in use had been known for more than a year, most with a patch available.48
Shrinking the supply of vulnerabilities useful for attackers also requires rap-
idly and comprehensively applying available patches. Public policy should
also incentivize vendors to certify each other’s patches, where appropriate,
and induce organizations to apply them rapidly.49

Understanding how well organizations apply patches is an important
metric of security behavior. But there is little consistent and reliable public
information about most organizations’ rates of patch adoption. This pre-
vents customers and business partners from using this information to
sort the marketplace into high and low security performers. The result is
that organizations have difficulty selecting companies for good security
behavior. Government procurement rules offer an opportunity to reward
companies with good patch application performance and help encourage
adoption of these standards elsewhere in the private sector.

9.	 Track Patch Application Performance

NIST should work with the OMB to develop and publish standards
for patch application performance. Where recommendation 6
deals with vendors and their patch development performance, this
recommendation addresses all other organizations and their patch
application performance. These standards would measure the time
between, when a patch was made available and when it was applied,
including specific categories for industry type and organization
size. These patch application standards could then be used to pref-
erence high performing companies bidding on federal contracts.

48	 Verizon, “2015 Data Breach Investigations Report (DBIR)” (Verizon Enterprise Solutions, April 15,
2015), 15, http://www.verizonenterprise.com/DBIR/2015/.

49	 Ioannidis, Christos, David Pym, and Julian Williams. “Information Security Trade-Offs and Optimal
Patching Policies.” European Journal of Operational Research 216, no. 2 (January 16, 2012): 434–44

20 Countering the Proliferation of Malware: Targeting the Vulnerability Lifecycle

10.	Inform Market Response to Patch Application Performance

Customers should be able to incentivize organizations to more rap-
idly and effectively adopt patches by rewarding good behavior with
their business. This requires that information about organization’s
patch application performance be available in the marketplace.
To make this possible, the Securities and Exchange Commission
(SEC) should encourage quarterly disclosure of patch application
performance by firm. These records should be broken down by
category of software in use and include vulnerability reports, the
number of patches applied, their corresponding vulnerabilities,
and the time between when each patch was made available and
then applied.50 This disclosure should also include notice for any
software in use but no longer supported by the original vendor,
indicating that no security updates are being made available.
Software vendors should report aggregate vulnerability disclosures
and patches issued. These changes will give new information to
customers and businesses to evaluate the security behavior of those
they transact with, encouraging better patching performance.

50	 These changes could follow on the 2011 guidance, and be included under “Description of Business”
on firms’ annual 10-K reporting.

21Belfer Center for Science and International Affairs | Harvard Kennedy School

Counter-Arguments

This paper assumes that vulnerabilities are sufficiently sparse in software
such that a substantial reduction in supply is possible, but that may not be
true. Most bug bounty programs assume vulnerabilities are sparse to some
degree; why pay for bugs without the expectation that a patch will remove
that vulnerability and improve the security of a piece of software? But the
question of vulnerability’s density in code remains a point of contention in
scholarship. 51 The topic deserves further study as it plays a key role in how
the malware economy will respond to constraints on vulnerability supply.

Few piece of malware leverage new vulnerabilities unknown to defenders,
so called zero-days, so it could be argued that improving the incentives to
find these vulnerabilities will yield little benefit. It is true that most mal-
ware doesn’t leverage zero-days, which can be costly and time consuming
to employ against a target.52 For most malware authors, it is better to use
known vulnerabilities that offer reliability and consistency.53 There is an
inordinate focus on zero-day vulnerabilities in cybersecurity policy debates
but this paper addresses the entire vulnerability life cycle rather than
being limited to just known or unknown vulnerabilities. Thus, the recom-
mendations above work in concert to produce positive security outcomes
regardless of whether a vulnerability is old or new.

Another argument is that these recommendations do little to specifically
address the sale and use of surveillance malware. While this proposal does
nothing to impede transfer of such software, the recommendations would
generally shorten the vulnerability life cycle, impacting surveillance mal-
ware as much as any other kind. The same mobile phone whose security

51	 Eric Rescorla, “Is Finding Security Holes a Good Idea?,” IEEE Security and Privacy 3, no. 1 (January
2005): 14–19; Andy Ozment and Stuart E. Schechter, “Milk or Wine: Does Software Security Im-
prove with Age?,” in Usenix Security, 2006, https://www.usenix.org/event/sec06/tech/full_papers/
ozment/ozment_html/; Dan Geer, “For Good Measure: The Undiscovered,” ;login: 40, no. 2 (2015):
50–52.

52	 Robert M. Lee, Michael J. Assante, and Tim Conway, “Analysis of the Cyber Attack on the Ukrainian
Power Grid,” SANS Industrial Control Systems, 2016, 9; Lillian Ablon and Andy Bogart, “Zero Days,
Thousands of Nights” (Santa Monica, CA: The RAND Corporation, 2017), https://www.rand.org/
content/dam/rand/pubs/research_reports/RR1700/RR1751/RAND_RR1751.pdf.

53	 Indeed, issuing a patch is often cause for exploit authors in the malware ecosystem to develop new
products, reverse-engineering vulnerabilities from the patches announced by vendors and writing
an exploit to match. For more on this topic see, Recorded Future, “Hacker Forum Traffic Analysis:
‘Patch Tuesday … Exploit Wednesday’ and Other Patterns,” Recorded Future, September 24, 2015,
https://www.recordedfuture.com/hacker-forum-traffic/.

22 Countering the Proliferation of Malware: Targeting the Vulnerability Lifecycle

could be improved by reducing the supply of these vulnerabilities, and
more rapidly patching software flaws, is the same system being targeted for
surveillance.54 This paper is not a comprehensive approach to restraining
the marketplace for surveillance tools but, rather, proposes a more practi-
cable starting point to limiting the use of malware than a complicated and
deleterious international export control regime.

54	 Adam Senft, Jeffrey Knockel, and Ron Diebert, “A Tough Nut to Crack: A Further Look at Pri-
vacy and Security Issues in UC Browser” (The Citizen Lab, August 7, 2016), https://citizenlab.
org/2016/08/a-tough-nut-to-crack-look-privacy-and-security-issues-with-uc-browser/; Jakub
Dalek, John Scott-Railton, and Masashi Crete-Nishihata, “Shifting Tactics: Tracking Changes in
Years-Long Espionage Campaign against Tibetans” (The Citizen Lab, March 2016), https://citizen-
lab.org/2016/03/shifting-tactics/.

23Belfer Center for Science and International Affairs | Harvard Kennedy School

Conclusion

This proposal argues that states working to limit the use of malware should
shift their focus from export controls to policies that change attacker’s
incentives in building and acquiring malicious software. Policymakers can
accomplish this by incentivizing more complete dissemination of vulner-
abilities to defenders as well as facilitating the rapid update of software.
These ten recommendations do not present a complete solution to the use
of malware, but are a strategy to build on existing defensive efforts and
improve the status-quo through the full chain of mitigation from discovery
to patching. By implementing these changes, the U.S. and others would
incentivize more complete discovery of unknown vulnerabilities and more
rapid and effective patching of known bugs.

It is important to recognize that these recommendations are an improve-
ment to the status-quo but are premised on the state of software today,
which remains fundamentally insecure. Improving the pace and quality of
patch adoption for example should not substitute for a long-term strategy
to improve security across the computing ecosystem. In shaping such a
strategy, policymakers should encourage use of less error prone program-
ming languages, for example Rust, and pursue a shift towards easier to
secure and more rapidly patched architectures that expand the use of cloud
computing.55 With the rapidly growing importance of embedded systems
and the “internet of things”, policymakers may also want to consider some
combination of narrow liability and voluntary standards, like a software
development oriented NIST Framework, in critical industries like automo-
tive and medical device manufacturing.56

This proposal also helps to avoid a potential collision with states like
Russia and China over censorship and content restrictions. Export con-
trols are used to specify and block the sale of certain software products,
that is, they are an attempt to control the movement of certain kinds of
information across borders. One such set of information controls could
easily to lead to debate over others, perhaps focused on software used to

55	 Peter Bright, “Mozilla, Microsoft Rebuilding Their Browsers’ Foundations without Anyone Noticing,”
Ars Technica, April 20, 2017, https://arstechnica.com/information-technology/2017/04/mozil-
la-microsoft-rebuilding-their-browsers-foundations-without-anyone-noticing/.

56	 For more on this, see Chapters 4 and 5 in Harrison and Herr, Cyber Insecurity.

24 Countering the Proliferation of Malware: Targeting the Vulnerability Lifecycle

circumvent censorship or specific kinds of internet content. By moving
away from export controls to emphasize policies which shrink the supply
of vulnerabilities, states avoid the debate over restricting information flows
completely.

There is little about malicious software that grants the state a monopoly
on capability in cyberspace. Policymakers must recognize the distributed
nature of innovation in the malware markets and relatively low barriers to
information exchange between groups building malicious software. These
make it impractical to restrict the transfer of malware or try to contain the
knowledge of how to build it. Shortening the vulnerability life cycle is one
way to achieve broad security gains without imposing unnecessary burdens
on the defensive community. This proposal offers a way forward to limit
the use of malware without relying on ineffective export controls or other
ill-suited non-proliferation regimes. The endstate is a greater level of secu-
rity for average users and organizations, with a substantial reduction in the
operational efficacy of hostile groups.

The Cyber Security Project

Belfer Center for Science and International Affairs

Harvard Kennedy School

79 John F. Kennedy Street

Cambridge, MA 02138

www.belfercenter.org/Cyber

Copyright 2017, President and Fellows of Harvard College

Printed in the United States of America

	_GoBack
	Executive Summary
	Introduction
	Background on Export Controls Targeting Malicious Software
	Proposal: Shorten the Vulnerability Life Cycle
	Conclusion

