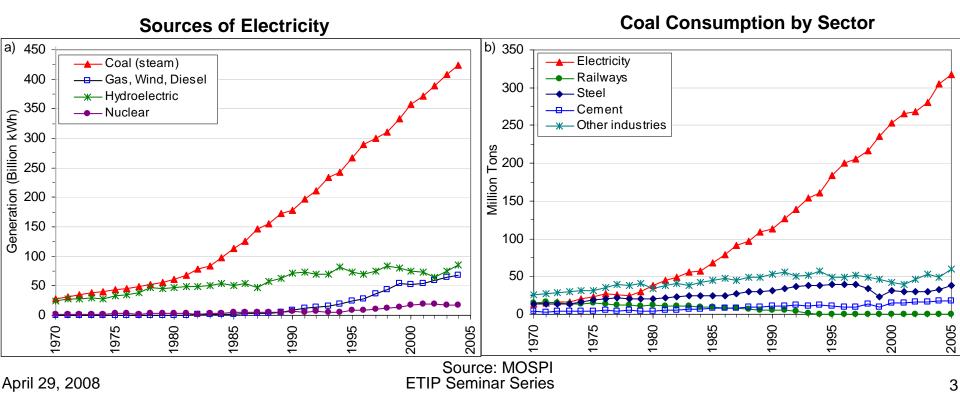
Coal Assessment and Extraction in India: Issues and Prospects

Ananth Chikkatur and Ambuj Sagar

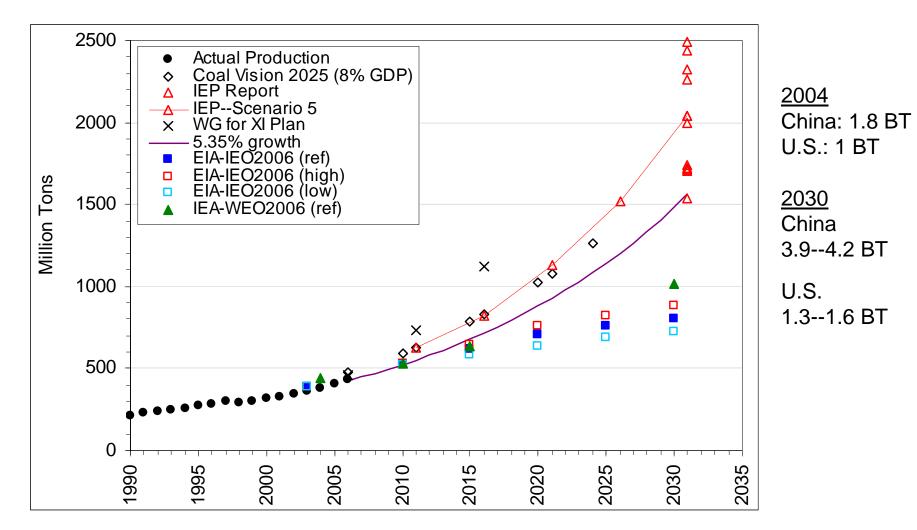
Belfer Center for Science & International Affairs Kennedy School of Government, Harvard University


> ETIP Seminar Series April 29, 2008

Outline

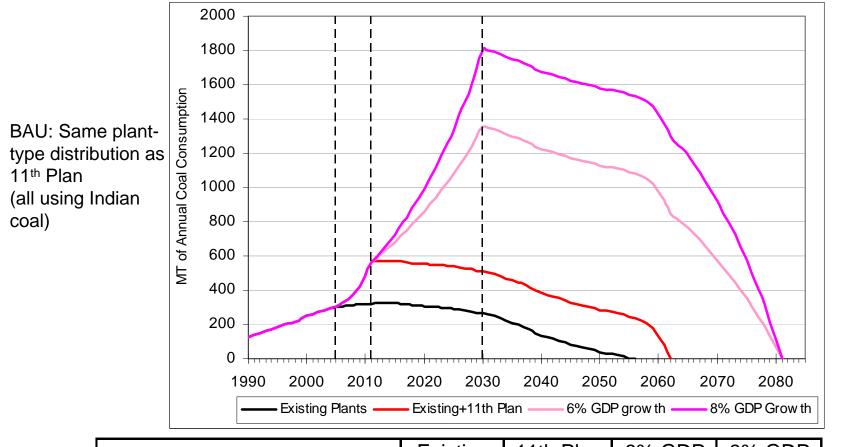
- 1. Importance of Coal in India
- 2. Challenges in the Coal Sector
- 3. Seminar Series on Key Coal Issues
- 4. Key Issues
 - a. Resource/Reserve Assessments
 - b. Technologies for coal extraction
 - c. Social and Environmental Issues
 - d. Human Resource and Capacity Building
 - e. Institutional and Pricing Reforms
- 5. Conclusions

1.0 Electricity and Coal


- Electricity is a key modern energy source
- Electricity is unevenly distributed
 - 490 million people w/o electricity (mostly in rural areas)
- Coal dominates Indian electricity sector
 - Accounts for 53% of commercial energy; 71% of electricity generation
- 80% of domestic coal produced is used for electricity generation in India
- India has significant domestic coal resources key for energy security

1.1 Growing demand for electricity

- Electricity generation expected to increase six-fold by 2030
 - 600 TWh in 2004-05 → 3600-4500 TWh by 2030
 (China: 3250 TWh in 2007)
- Future growth of electricity in India is projected to rely heavily on coal
 - 10 GW of coal-power installed 2002-2007 (China: 90 GW in 2006)
 - 45 GW of coal-power planned for 2007-2012
- Domestic coal production might be unable to cope with demand → Rising imports


1.2 Future Coal Demand

Indian projections higher than IEA/EIA

More coal mining and coal use in India

1.3 Lifetime coal consumption (power plants)

	Existing	11th Plan	6% GDP	8% GDP	
	Plants	BAU			
Electricity Growth		11%	4.8%	6.4%	Dovord ovicting
Lifetime Coal consumption (BT)	12.2	24.7	68	u 1 🗲	Beyond existing reserve base
Peak coal consumption (MT)	327.3	573.6	1353	1805	

April 29, 2008

ETIP Seminar Series

Challenges in Coal Sector

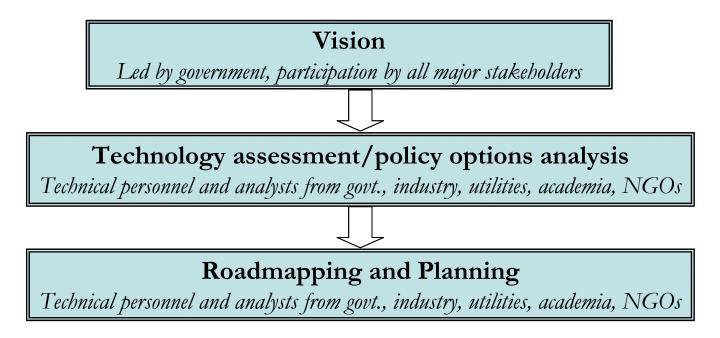
2.0 Challenges in Coal Sector

- Need to meet the rising demand
 - Increasing pace of exploration
 - Upgrade technologies to access deeper coal reserves
- Reduce and manage social issues
 Resettlement and rehabilitation
- Limit and manage environmental impacts
 - Balance between forests and mining
- Introduction of institutional and pricing reforms
- Human resources and capacity building

Indian Seminar Series

3.0 Joint Seminar Series

- Initial interactions with the Indian Planning Commission and ASCI on CCT roadmapping
 - Encouraging discussions with Kirit Parikh, Surya Sethi, & T.L. Sankar
- Initiated a stakeholder-based workshop series to jointly assess problems, policy gaps, and policy solutions in both the coal and the coal power sectors
 - Series to build on Integrated Energy Policy exercise and Sankar Committee work on coal-sector reforms
 - Direct engagement with policymakers and stakeholders
 - Facilitating open "off-the-record" discussions among a wide range of stakeholders
 - Two workshops on the coal sector already held in India
 - Two more planned: a) coal power; b) pricing, regulations, institutions


3.1 Goals of Seminar Series

- Assess the current state of knowledge and gaps
- Determine a plan of action for filling knowledge gaps
- Assess key processes and technologies for more efficient and cleaner coal extraction and power generation
- Set in a motion a process for discussions and resolution of conflicts among different stakeholders
- Help develop a coherent roadmap for the coal and coal-power sector for the coming two to three decades

3.2 Workshop Process

- ETIP team (Ananth Chikkatur & Ambuj Sagar)
 - Research and interviews with various stakeholders
 - Preparation of a "Background Paper," highlighting key issues, to be handed out to participants before each workshop
 - Facilitate discussions during the workshops
 - Convert each Background Paper to a Final Paper (including discussions during the workshop) to be published by Planning Commission
- Planning Commission/ASCI (Surya Sethi, Satyamurty, T.L. Sankar)
 - Organization and logistics of workshops
 - Review Background and Final Papers
 - Arrange for funding from local sources
- Funding from NTPC, CIL, and SCCL
 - Support for workshops and participants' travel (if necessary)
 - Support for ETIP team's travel and research activities (but not salaries)

3.3 Policy/Technology Roadmapping

Need for a Common Vision

- Common vision is necessary for development of better and consensusbased policies
- Different visions can lead to different approaches and policies
- Vision must address the challenges and constraints facing the sector
- Perspectives of different stakeholders (PSUs, private industry, NGOs, citizen groups...) must be taken into account

3.4 Visioning Exercise

- Facilitated a process (w/ gov't, industry and NGOs) to develop a common vision for the Indian coal sector:
 - Vision in practice: "Produce the desired/requested quantum of production using the most economical means possible."
 - Starting point: "Coal is a national asset that needs to be <u>preserved</u>, <u>conserved</u>, <u>extracted</u>, <u>and utilized efficiently</u> in a <u>socially and</u> <u>environmentally sustainable manner</u> to meet the nation's <u>energy</u> <u>needs</u>."
- Lots of discussion involving a whole range of stakeholders (Coal industry, NGOs, Ministries)
- New issues were raised
- Terms were defined
- Final Vision was accepted by all present

3.5 Common vision (coal sector)

Coal, a national asset, must be assessed, extracted and utilized in a <u>scientific and viable manner</u> with due responsibility for <u>working conditions</u> as well as <u>ecological</u> <u>and social sustainability</u> to meet the <u>human and economic</u> <u>development needs</u> in the country

- "assess" = explore, quantify, and categorize
- "scientific" = systematic, efficient, economic (conservation and preservation is implicit in "scientific")
- "Viable" includes economic, social, and environmental costs
- 'working conditions" includes safety, occupational hazards, living environment, health
- "sustainability" = maintain (or improve) performance of existing system for current and future generations

Key Issues

4.0a Reserve/Resource Assessment

- Confusion among experts regarding "reserve" vs. "resources"
- Currently, only geological resources are assessed in India (not reserves)
 - Total: 253 billion tons (96 BT in "Proved" Category)
- Only tentative reserve estimation available
 Basis for estimation is not reliable (nor publicly available)
 - IEP: 56-71 BT of extractable reserves
 - MoC/CMPDI: 52 BT
- Better estimates of reserves is critical for development of long-term electricity/energy policies
- Coal reserve estimates are poor in almost all countries (EWG report)

4.0b Coal exploration in India

- Key exploration agencies:
 - Geological Survey of India (GSI)
 - Coal Mine Planning and Design Institute (CMPDI)
 - Mineral Exploration Corporation (MECL)
 - Singareni Collieries Company Limited (SCCL)
- Funding: Ministry of Mines and Ministry of Coal
- Borehole Drilling is main technology in use for coal exploration
 - Limited number of drills; vintage and breakdowns
 - Need to use alternative technologies (seismic, geophysical techniques)
 - Insufficient investment in exploration technologies
 - Limited knowledge of international state-of-the-art technologies and practices

4.0c Exploration Constraints

- Knowledge gaps in various aspects of coal resources (magnitude and distribution of resources by area and by depth)
- Exploration overly guided by production considerations
 - There has been less emphasis on quality, and more on quantity, of geological reports
 - Overemphasis on exploration within 300 m depth
- Exploration pace limited by forest conservation laws and social issues
 - Problems getting forest clearances on time
 - People resisting exploration in their lands (worried about forced eviction)
- Domestic technological capacity is weak in the exploration sector, with little indigenous technological R&D inputs, and severe problems with human resources

4.0d Converting resource to reserves

- Lack of reconciliation and integration of data—data systems and databases: common repository; reconciliation; coordination; integration
- Significant uncertainty about confidence level of various data (quantity and quality)
 - Error assessment and statistical analysis is not being done regularly
- Significant confusion about extractable coal
 - Accuracy of reserve and resource assessments
 - Methodology for projecting extractability from resources
- Depleted reserves
 - No data exists on depleted reserves (only cumulative production)
 - Possible linkages with illegal mining
 - Crucial to assess mining efficiency and needs to be done regularly
- Need for better institutional coordination
 - Incorporation of feedback from past/field experiences
- Need for a joint exercise among exploration agencies to address these issues

4.1a Technologies for extraction

- Limited and evolving knowledge of technologies
 - Incomplete data and information on technology assessments in Indian context
 - Technology forecasts cost and performance uncertainty
 - Evolving technological capacity in the country
- Need to look not just at extraction technologies, but overall technology systems (blasting, conveying, processing, etc.)
- Coal India Limited (CIL) is the dominant player in coal production

- CIL effectively sets technology standards

- Contractors (with short-term contracts) are now engaged in coal extraction
 - Issue about legality; can be technology leaders
- Increasing role of the private sector (captive mining)

4.1b Opencast Technology

- Current dominance of opencast mining (OCM)
 - Low cost, ease of implementation, greater mechanization, faster production
 - Shovel-dumper, loader-dumper, and shovel-draglines
- Problems with OCM
 - High operating costs
 - Low capacity utilization
 - Large operation and maintenance workforce
 - Need to plan and build extensive road system for overburden removal and dumping
 - Extensive land degradation (social/env't concerns)
- OCM prices do not reflect many environmental and social costs (lack of level playing field for underground mining)
 Methods for assessment of environmental and social costs
- Other options: surface miners, crushing and conveying, bucket-wheel excavators, selective mining, highwall mining

4.1c Underground Mining (UGM)

- Underground mining is declining
 - Opencast-able resources are limited
- UGM will be needed to meet the sharply rising future demand
 - Long-term perspective needed to put appropriate policies in place
- Main UGM technologies currently in use are:
 - Conventional Bord & Pillar system
 - Semi-mechanised Bord & Pillar system with Side Discharge Loaders (SDLs) /Load Haul Dumpers (LHDs)/ Universal Drilling Machines (UDMs)

- Continuous Miners (CMs). Mechanised Longwall, and other special methods

- Problems with UGM
 - High cost of production (twice as expensive as OCM)
 - Low productivity
 - Challenges in increased mechanization
- Initial deployment of mechanized longwall had many problems
 - Inadequate exploration of the areas earmarked for longwall mining
 - Non-availability of long panels; sequencing of extraction from different seams
 - Lack of proper, trained manpower, and poor planning

4.1d Issues for technology deployment

- Need to carry out a mine-level study on man and machine productivity, and analyze reasons for variations
 - Will allow for benchmarking
 - Necessary for designing better incentive schemes for workers and management
 - Appropriate technology choices can only flow from such an exercise
- Long-term markets (with less uncertainty) are necessary to attract manufacturers
 - Long-term contracts are necessary for contractors to adopt advanced technologies
 - Legitimize contract mining
- Need to rationalize the pricing of coal grades to promote new technologies
 - Higher prices for higher grades
 - Coal is currently priced lower than other fossil fuels on energy basis
- Impact of greater private sector involvement?
- Procurement is an important issue
 - Can delay new technology acquisition/deployment

4.2a Displacement—Key Social Issue

- Displacement of people due to coal mining is inevitable and is of enormous magnitude
 - PAPs and secondary displacees (due to loss of agricultural land, environmental degradation, etc.)
 - <u>Coal Vision 2025</u>: 170,000 families or 850,000 displaced persons would have to be rehabilitated by 2025 when the requirement for land would double from current 147,000 ha to 292 500 ha
- Some data and socio-economic information on PAPs exist, and need to be publicly disseminated
 - Fernandes: about 5 million (DP and PAP) for all mining (mostly coal) (disputed)
 - 75% of displaced people's lives worsened due to displacement
- Detailed socio-economic data needs to be monitored, collected, and authenticated on a routine basis for all projects
- Different firms have different R&R policies, but they can always do better
 - Key is in implementation—poor record
 - Initial focus was employment, and now more cash-based
 - Company management need to have a long term social vision (change of mindset)

4.2b Better R&R

- Rehabilitation and Resettlement (R&R) should make sure that people are better off than before
 - People can become more positive towards coal mining projects, if they see it as being in their benefit
 - Those who are paying the price should be the beneficiaries
- PAPs must be part of the decision-making process
 - Different groups will have different needs (especially tribals)
 - R&R benefits impact different groups differently
- R&R should include creation of social assets (health, education, etc.) and benefit sharing
 - People need assets to enter the new economy and be aware of their options and opportunities
 - Both employment and lump-sum cash creates lots of social problems
 - Allow PAPs access to opportunities emerging from projects (e.g. township)
- Start development/training activities in areas well-before projects & operations commence
 - Need to create a baseline of socio-enviro-economic conditions (20-25 year timeframe)
- Need for a national "displacement roadmap/planning" to eliminate multiple displacement

April 29, 2008

4.2c Reclamation/Illegal Mining

- No proper data on number and area of non-working mines (abandoned, orphaned, closed, temporarily continued, etc.)
- "Closed" mines need to be reclaimed/rehabilitated and land be returned and reused
 - Post-mined land can be gifted to others—need for policies to make this happen
 - Legal issues regarding post-mining land use needs to be addressed
 - Leasing is not feasible in Indian legal conditions
- Progressive reclamation is being done, but final closure has issues
 - External overburden dumps, final height/contouring, etc.
 - Closure plans need to fully followed and certified by DGMS (liability issues)
- Money that is collected for closure/reclamation needs to be in a separate account and used only for this purpose
 - Reclamation bonds/bank guarantees need to be considered
- Illegal mining and illegal marketing (pilferage)
 - small shallow-dug "village mines" on private land
 - mining on re-opened abandoned or orphaned government mines
 - scavenging on the leasehold land of official operating mines
- No proper data on extent of illegal mining and illegal marketing
 - 70-80 MT?
- Illegal mining is linked to the question of ownership of mineral resources

4.2d Environmental Issues

- There is now some convergence of views between coal companies and MoEF
- Need to have longer perspective plans and avoid ex-post facto clearance
- MoEF to provide better guidelines on preparation of Environmental Impact Assessment (EIA)
 - water/air modeling, quantifying damage costs, etc.
 - Regional conditions/impacts/other projects
 - New technologies, washeries
- Mitigation is often addressed in EIA, but cost of damage to environment is not assessed
 - Methods for quantification of damages needs to be developed
- Implementing options that protect environment without corresponding production/profit benefits are contentious issues
- Need to separate environment and R&R costs in DPRs
- EIA-EMP should not be administered or directly funded by project proponent
 - EIA should be prepared by independent accredited agencies (blacklist bad agencies)
 - EIA agencies should report to MoEF, rather than project proponent directly
- Need to involve local people in preparation of EIAs, as they have intimate knowledge of flora and fauna

4.2e Go-NoGo Zones

- Key concern is reduction of time taken for clearances
- Creation of Go-NoGo zones for forest areas
 - Accepted in principle
 - Need for demarcating and mapping areas
 - Enforcement
- Create Go-NoGo areas for infrastructure development (demarcate and exclude coal bearing areas)
 - There are tradeoffs between forests and habitation need for balance
 - Need to make a master plan for all coal bearing areas (CIL, captive, etc.)
 - Certification needs to be provided
- Green credits for afforestation can also be considered

4.3 Human Resource/Tech. Capacity

- Lack of appropriately trained manpower is becoming a critical problem
 - Geologists in exploration and mining
 - Graying workforce as hiring has been restricted
 - Experienced people are retiring with loss of expertise and institutional memory
 - Loss of experts through migration to private sector and captive mining
- Retraining of workers is critical to promote increasing mechanization
- Working conditions in mines
 - More data and information is needed to ascertain state of affairs in mines
- Retention of young people and experienced people
 - Salaries, benefits, and attractive career paths
- Strengthening technological capacity
 - CMPDI and SCCL should learn about international practices and take up training programs with international experts
 - JV and acquisitions can increase indigenous capacity

4.4a Institutional Reforms

- Government dominates the coal industry Ministry of Coal, CIL, SCCL
- Better coordination and cooperation among different ministries (coal, railways, env't/forests, mining, power) is needed
 - Need to exchange information on practices, management methods, etc.
- Need clarity on institutional functions
 - Conflict of interest in agencies doing multiple tasks
 - Funding problems
- Need for greater competition
 - Captive coal mining and private sector entrants are being encouraged with allotment of coal blocks
 - Can help improve technologies and management practices
- Important to assess how increasing private sector involvement in coal will affect current institutions and practices
- Need for an independent coal regulator to regulate aspects of the extraction and transport of coal, and set appropriate prices for large consumers

4.4b Pricing Reforms

- Coal prices deregulated since 2000, but prices are still "guided" by Ministry of Coal, which controls the main coal producer (CIL)
- Current grading scheme has poor incentives for quality
 - Coal should be priced according to its heat value
 - Number of grades can be increased
 - Already in process
- Need for FSTAs between large consumers and suppliers
 - Can reduce illegal mining
 - Already in process
- Need to include social and environmental costs in coal price
 - Need for assess methodologies in Indian context

5.1 Conclusions/Outlook

- Need for better data and analysis all around
 - Lots of data gaps
 - resources, reserves, technology suitability, abandoned mines, displacement, socio-economic data, environmental impacts, reforms, etc.
- Need for better planning process
 - Lack of coordination among different agencies
 - Lack of common vision
 - Retrospective analysis (critical examination of the past)
 - Long term perspectives and planning
- Need to involve a wider range of stakeholders

 Critical in ensuring successful implementation of policies
- Seminar series is helping on all of these fronts

Acknowledgements

Indian Seminar Series

Surya Sethi, M. Satyamurty, S. Mahajan, Kishore Chaudhary (Indian Planning Commission)

T.L. Sankar, Usha Ramachandra (Administrative Staff College of India)

Funding:

Indian workshops: CIL, NTPC, SCCL

David and Lucille Packard Foundation BP Alternative Energy and BP Carbon Mitigation Initiative (general support grants)

Project on Energy Technology Innovation Policy (ETIP)

Belfer Center for Science and International Affairs Kennedy School of Government, Harvard U.